
The Visual Computer manuscript No.
(will be inserted by the editor)

A practical framework for generating volumetric meshes of
subject-specific soft tissue

Pieter Peeters · Nicolas Pronost

Abstract Studying human motion using musculoskele-

tal models is a common practice in the field of biome-

chanics. By using such models, recorded subject’s mo-

tions can be analyzed in successive steps from kinemat-

ics and dynamics to muscle control. However simulating

muscle deformation and interaction is not possible, but

other methods such as a finite element (FE) simulation

are very well suited to simulate deformation and inter-

action of objects. In this paper we present a practical

framework for the automatic generation of FE ready

meshes based on subject-specific segmented MRI data.

The proposed method resolves several types of data

inconsistencies: noise, an incomplete dataset and self-

intersections. This paper shows the different steps of

the method, such as solving overlaps in the segmented

surfaces, generating the volume mesh and the connec-

tion to a musculoskeletal simulation.

Keywords Virtual human · Finite element simula-

tion · Musculoskeletal simulation · Subject-specific

modeling · Computational geometry

1 Introduction

The simulation of human motion using anatomically-

based musculoskeletal models is of interest in many

P.W.A.M. Peeters
Utrecht University (The Netherlands), Games and Virtual
Worlds

N. Pronost
Utrecht University (The Netherlands), Games and Virtual
Worlds
Tel.: +31-302537578
Fax: +31-302534619
E-mail: nicolas.pronost@uu.nl

fields including computer graphics, biomechanics, mo-

tion analysis, medical research and virtual character an-

imation. Much research has been done to understand

the musculoskeletal system, and so there is a large am-

ount of data [1] describing the mechanics of muscle,

the geometric relationships between muscles and bones,

and the motions of joints. In the medical field, the

neuromuscular system has been studied to get a bet-

ter understanding of movement disorders in patients

with cerebral palsy, stroke, osteoarthritis and Parkin-

son’s disease. Thousands of patients have been studied,

recording their neuromuscular excitation patterns both

before and after treatment. However, the detailed un-

derstanding of the function of each of the elements of

the musculoskeletal system remains a major challenge.

Researching these diseases in real-life experiments

has the following limitations. First, many important

variables are hard to measure in an experiment, such as

the force generated by a muscle. Second, it is difficult

to deduce cause effect relationships in complex dynamic

systems based on experimental data alone. These prob-

lems that arise when analyzing experimental data can

be solved for a large part by combining the experimen-

tal data with a neuromuscular simulation framework.

Neuromuscular simulation allows one to study the dif-

ferent facets of neuromuscular activity, specifically the

cause-and-effect relationships between muscular exci-

tation patterns, muscle forces and resulting motion of

the body. It can integrate theoretical models describing

the anatomy and physiology of the musculoskeletal sys-

tem and the mechanics of multi-joint movement. Simu-

lations also enrich experimental data by providing esti-

mates of important variables such as muscle and joint

forces, which are difficult to measure experimentally.

Another approach to simulating motion is the use

of finite element analysis (FEA). Finite element anal-

ysis is a method to simulate a complex environment

2 Peeters and Pronost

by representing it as a set of small elements which are

interconnected by a means of (differential) equations,

which define the properties of the environment. Typ-

ical data sources for creating FEA setups are volume

scans of subjects, using techniques such as magnetic

resonance imaging (MRI) or X-ray computed tomogra-

phy (CT). Using such a volumetric dataset of a subject,

a detailed FE simulation setup, consisting of a set of ele-

ments that describe bones, muscles and tendons, can be

created. The main problem of these datasets is the inac-

curacies which arise from and are inherent to the data

acquisition process. Even the best acquisition methods

such as done for the visible human dataset need some

steps to refine the data [2]. Since FEA offers such an ad-

vantage in simulating interaction between muscles and

bones over a more high-level type of simulation as mus-

culoskeletal simulation, the question arises whether we

could create a bridge between these types of simulation

environments.

The aim of this study is to propose a practical frame-

work capable of preparing the raw volumetric dataset

of a subject to an FE simulation of the deformation of

its soft tissue. The framework has also been designed

in a way that connection to musculoskeletal simulations

of the same subject be facilitated. We demonstrate our

method on rigid and soft bodies of the lower limb with

a particular attention to the knee area. We believe that

our framework is a step towards the automatic simu-

lation of muscle deformations in virtual humans in a

predictive manner through the interaction of the mus-

cle anatomy with applications in computer graphics.

Similarly, the method can simulate a complex muscle

structure so that muscle function can be investigated

in biomedical engineering.

2 Related work

The biomechanics community has ongoing efforts to

create detailed human musculoskeletal models. Although

recent models [3,4] provide accurate muscle parameters

for the whole body, they by definition do not provide

subject-specific geometrical data needed to simulate de-

tailed muscular models. These models use lumped pa-

rameter 1D muscle models that do not account for mus-

cle geometry. In musculoskeletal representation physi-

ological parameters such as muscle lengths and mus-

cle forces have been of primary interest, and the re-

alistic visualization has played a secondary role. Over

the years, neuromuscular simulation has evolved from a

fragmented community where each research group de-

veloped their own simulation software into a more col-

laborative environment. This has partly been the re-

sult of the efforts by the creators of the OpenSim plat-

form [5,3], by providing an open-source platform that

lets the user develop a wide variety of musculoskeletal

models that can be shared due to the open nature of the

software. We also observe a recent tendency to trans-

fer these musculoskeletal models and techniques to the

computer animation community [6].

Many attempts have been made at simulating mus-

cles in high detail using the method of finite element

simulation [7–9], for example, to investigate intramus-

cular pressures [10]. Teran et al. have designed a frame-

work for extracting and simulating musculoskeletal ge-

ometry from the visible human dataset [2,11]. In their

study they had to use a motion from a different sub-

ject, since the visual human dataset is obtained from a

deceased subject and no motion capture has been pre-

viously performed. The same dataset was used in ref.

[12] to create a 3D model of the human leg, specifically

for visualization of deformations, and incorporated also

the rendering of muscle fibers using textures.

In order to simulate interactions between rigid and

soft bodies within a common framework, two-way cou-

pling methods have been investigated. For example,

Shinar et al. [13] proposed a time integration scheme

for solving dynamic elastic deformations in soft bod-

ies interacting with rigid bodies. Despite heavy com-

putation times required for the finite element simula-

tion, their framework can handle two-way coupled con-

tact, collision, stacking, friction, articulation, and PD

control. Real-time performances have been achieved by

Kim and Pollard [14] by using reduced deformable mod-

els and linear-time algorithms for rigid body dynam-

ics. The primary focus of their work was to develop

a fast physically based simulation system for skeleton-

driven deformable body characters. In [15] Stavness et

al. focused on modeling and simulating subject-specific

anatomical structures composed of both hard and soft

tissue components. They demonstrated their framework

on the dynamics of the jaw tongue hyoid complex where

the deformation of the 3D FEM tongue model is driven

by muscle activations. Their work on a solver insists on

the need to integrate constraints directly into the ve-

locity solution.

In [2] the segmentation of anatomical entities was

performed by creating a level set representation of each

entity relevant for the simulation. The signed distance

function required for the level set procedures and to

generate the triangulated surface was the fast marching

method [16]. They use slice-by-slice contour sculpting

to repair problem regions. First they manually exam-

A practical framework for generating volumetric meshes of subject-specific soft tissue 3

Fig. 1 Our framework prepares subject-specific segmented MRI datasets for the FE simulation of soft tissues.

ine each slice visually to check for and eliminate errors.

Level-set smoothing techniques are applied afterwards,

such as motion by mean curvature [17] to eliminate

any further noise. In this work, we used MRI data of a

much lower resolution than the visual human dataset.

Also, the segmentation process we used is automatic

and therefore needs a more rigorous repair process.

Blemker and Delp [18] used an MRI dataset to cre-

ate simulations of several sets of muscles to study the

variation in moment arms across fibers within a mus-

cle and later to predict rectus femoris and vastus in-

termedius fiber excursions [19]. They used MRI of live

and cadaver specimen, and manually segmented the ar-

eas of interest. They also created a fiber map for each

muscle of interest, based on template fiber geometries

morphed to each muscles target fiber geometry. They

used a manual segmentation process instead of an au-

tomatic segmentation as is used in this work. While

this method of segmentation provides a surface mesh

of higher quality, the method is not automatic. The

segmentation method used in this project comes from
Schmid and Magnenat-Thalmann [20]. This method is

based on an earlier work of Gilles et al. [21], who pro-

posed a registration and segmentation method for clini-

cal MRI datasets based on discrete deformable models.

The main contribution of this study to the field of

musculoskeletal and FE simulations is the semiauto-

mated pipeline, that resolves data inaccuracies, such as

muscle overlaps and self-intersecting muscles. Further

developments of the framework will eventually allow for

the connection between musculoskeletal and FE simu-

lations, and thereby building a step towards a unified

platform for subject-specific motion analysis.

This paper is structured as follows. In Section 3 we

detail the main features of our framework manipulating

the data sources and preparing the final FE simulation.

In Section 4 and section 5 we respectively discuss the

limitations of the framework and summarize the find-

ings of the study and suggesting possible research di-

rections.

3 Practical framework

3.1 Overview

Our framework consists of several key steps (see Fig-

ure 1). First the lower limbs of a subject are scanned in

an MRI machine. The acquisition protocol used in our

experiments is presented in Appendix B. Then the lower

limbs are segmented using the algorithm of Schmid and

Magnenat-Thalmann [20]. The segmentation algorithm

produces closed surfaces of muscles and bones and the

attachment sites where the muscle connects to the bones

(Section 3.2).

The closed surfaces from the segmentation result

cannot be converted directly to volume meshes as the

segmented data may contain segmentation artifacts and

noise (Sections 3.3, 3.5 and 3.6) or be incomplete (Sec-

tion 3.4). These inconsistencies are first solved before

the surfaces can be given to the mesh generator (Sec-

tion 3.7). To complete the FE ready meshes, we finally

create attachment specifications that can be used by a

FE solver to constraint the movement of the soft tissues

(Section 3.8).

3.2 Segmenting MR images

To illustrate the features of our framework, we use a

segmented dataset resulting from a template method

that uses a minimal energy optimization to fit a tem-

plate muscle or bone to the acquired MRI data [20].

Since the method is dependent on forces, balancing

the weights of the non-penetration constraints and the

other constraints can be a difficult if not impossible

task. Therefore, the resulting surfaces may suffer from

intersections between surfaces and self-intersections, wh-

ich we resolve in this study. Since the density of the

vertices of the shapes is uniformly spread, the resulting

shapes have nearly the same property. The segmenta-

tion algorithm also includes tendon and attachment lo-

cations specified by vertex indices in the resulting mus-

cle meshes.

4 Peeters and Pronost

The segmentation algorithm produces surfaces of

bones and muscles. Surfaces are represented as a list

of vertices V = {vi : 1 ≤ i ≤ nV } and a list of faces

F = {fk : 1 ≤ k ≤ nF }, each face fk = (ik1 , . . . , i
k
nfk

)

consisting of a sequence of indices in the vertex list.

A surface S = {V, F} is a pair of a vertex list com-

bined with a face list. All surfaces are consisting of

only triangles, so each face has always three vertices

fk = (ik1 , i
k
2 , i

k
3).

An attachment site A is defined in the segmenta-

tion result as indices in a corresponding vertex list V

in the order they are defined in the muscle files: A =

{i1, . . . , inA
}.

Since some tasks in the pipeline change the amount

and ordering of the vertices in the data files, we process

the attachment sites to be index-invariant by defining

the attachment areas by geometry. This is explained in

Section 3.8. The tendons are defined in the same way

as the attachments, and for those we also need to con-

vert the indices to a geometric representation. This is

the protocol that we used to specify attachments and

tendons but any equivalent representation is possible

and can be used with minimal adjustments to our al-

gorithms.

3.3 Smoothing the surfaces

First, we have to apply a smoothing method to re-

move the high frequency artifacts from the segmenta-

tion algorithm. In this work we applied the method of

Taubin [22], since it is fitted to our type of biological

surfaces, which are closed surfaces with a nearly uni-

form vertex distribution. This method does not intro-

duce shrinking and is also the most suitable option with

regards to implementation complexity.

The algorithm is a low-pass filter, with three param-

eters: λ, µ and the iteration count N . The low-pass filter

properties are the pass-band frequency kPB , the pass-

band ripple δPB , the stop-band frequency kSB , and the

stop-band ripple δSB . The parameters are related to the

low-pass filter properties as follows.

λ <
1

kSB
(1)

1

λ
+

1

µ
= kPB (2)[

(λ− µ)2/(−4λµ)
]N

< 1 + δPB (3)

[(1− λkSB)(1− µkSB)]
N
< δSB (4)

Figure 2 shows the result of the operation on the

gastrocnemius muscle using the parameters given in

Appendix B.

Fig. 2 Smoothing results. Left is before and right is after the
smoothing operation.

3.4 Generating missing tendons

It is usual that after segmentation of the anatomical en-

tities from MRI some tendons are not present or that

tendons are present but their attachment to the mus-

cle is not defined. Due to MRI acquisition protocols,

location and shape of muscles, typical missing tendons

on the lower body are observed for the gastrocnemius

muscle and the soleus muscle, which are attached to

the femur, tibia or fibula at the top of the muscle and

are missing their connection to the foot. Since these

muscles are valuable for a simulation of the lower body,

we developed an algorithm that automatically edits the

surface mesh to incorporate a tendon structure, includ-

ing an attachment and tendon specification expected

further along in the pipeline.

The tendon generator gets a list of muscles that do

not have tendons. For these muscles, the ‘bottom’ part

of the muscle is detected, and is extruded towards the

foot. In our example muscles, the bottom direction is

the negative direction along the superior-inferior axis,

which in our dataset is the −z direction. It should be

adapted to other scanning configurations, for example

by detecting the principal axis of the tibia bone.

As a first step of the algorithm, the z-value vzfootmax

of the top vertex of the foot Sfoot is determined so

that vzfootmax
> vzi , vi ∈ Vfoot. For each muscle Smuscle,

the faces on the bottom part are recursively traversed,

starting with the faces connected to the vertex vzmusclemin

with the lowest z-value, creating a set Fbottom of faces

belonging to the bottom part of the muscle. The set

Fbottom is defined as follows.

Fbottom0
= {fk : vzmin ∈ fk}

Fbottomt+1 = Fbottomt ∪ {fk : fafk ∩ Fbottomt

6= ∅, angle(fk) < θmuscle}
angle(fk) = cos−1(fnk·−z)

180π

Here fafk is the set of faces adjacent to fk, angle(fk)

the function providing the angle between a face and the

xy-plane, fnk is the face-normal of face fk and itera-

tions of Fbottom are denoted as Fbottom#
. Summarized,

we collect the set Fbottom of adjacent faces that have

A practical framework for generating volumetric meshes of subject-specific soft tissue 5

Fig. 3 Left: The soleus muscle without tendons connecting
to the foot. Right: The soleus muscle with an attachment to
the foot generated automatically.

an angle with the xy-plane lower than θmuscle. For our

missing tendons we used a value θmuscle of 60 degrees.

After determining the faces that comprise the bot-

tom of the muscle, we start the extrusion. For each face

fk ∈ Fbottom, we set the z-value of each of its vertices to

v′zi = vzi + (vzfootmax
− vzmusclemin

). Then we determine

the edges Eborder on the border of Fbottom. The vertices

in the border edge set Eborder are duplicated and are set

to their original position. The gap between the original

border and the duplicated border is filled with regular

spaced vertices and corresponding faces Fgap. All the

faces from Fbottom and the newly added faces Fgap are

combined into a new set Ftendon = Fbottom ∪ Fgap, and

are together locally smoothed according to the method

described in Section 3.3. In Figure 3 it is shown how the

newly generated tendon for the soleus muscle compares

to the version without tendon.

The newly generated piece of muscle is also saved

as being tendon material by immediately generating a

tendon convex hull for the new vertices, as described in

Section 3.8.

This correction is not an ideal solution but the main

objective is to attach the muscle to the bone. Nonethe-

less, it is not advised to rely on simulations performed

on an area of interest where tendons have been gen-

erated this way. In our experiments on the knee joint,

only tendons near the foot needed to be generated, so

we are confident that our simulations are relevant in

regards to this issue.

3.5 Resolving self-intersections

The surface data provided by the segmentation algo-

rithm can contain self-intersections. The intersected faces

are inverted parts of the volume that the closed surface

describes. As these parts occur from bad segmentation,

our goal is not to untangle them as it would typically be

done in cloth simulation [23]. Indeed, that would add

information to the surface that should not be present

in the dataset, and it would be generated without pur-

pose. The only semantically correct way of resolving

them is by removing them in a way that the final sur-

face is still closed. We solved this issue by adapting

the algorithm proposed by Jung et al. [24] originally

designed to remove self-intersections from a raw offset

triangular mesh. The algorithm uses a region growing

approach, keeping a list of valid triangles. Starting with

an initial seed triangle, the algorithm grows the valid

region to neighboring triangles until it reaches triangles

with self-intersection. Then the region growing process

crosses over the self-intersection and moves to the ad-

jacent valid triangle. Therefore the region growing tra-

verses valid triangles and intersecting triangles adjacent

to valid triangles only. The region growing process is

complete when no more faces have to be added to the

valid region. We will describe here the adaptations we

made to the algorithm of Jung et al. to fit it to our

purpose.

As in the original algorithm, we remove faces that

have edges smaller that a predefined εe and reconfig-

ure faces that have angles smaller than εα. All faces in

each surface are checked for these two properties and

solved accordingly. For faces where an edge ep = (vi, vj)

is smaller than εe, that edge is collapsed by setting

vi = (vi + vj)/2 and vj is removed. Then the faces

containing vj are updated to refer to vi. But after ap-

plying this operation a number of times, the geometry

might contain some new topological problems. The sur-

face can contain two triangles that are opposite to each

other. We have adapted the algorithm so that these

faces are detected and removed, which is a valid op-

eration, since it is a part of the surface that defines

no volume. For a triangle fk that has an angle smaller

than εα, we do not remove any edges, but we change

its configuration. First we determine the longest edge

eu = (vi, vj), and find the triangle fm sharing that edge.

We then have fk = {vh, vi, vj} and fm = {vg, vj , vi}.
We now swap the edge eu, such that fk = {vh, vi, vg}
and fm = {vg, vj , vh}.

Since the method originally was developed for raw

offset triangular meshes, selecting a seed triangle was

easily determined by calculating the convex hull V C ⊂
V , and picking any triangle f ∈ F which has at least

vertex vi ∈ V C. In our case however, triangles taking

part in the convex hull can also be invalid, as is the

case in the vastus intermedius muscle. For this reason,

we added a constraint to the seed triangle selection.

First, we calculate the center of mass of the vertices of

the surface, by a simple averaging of the vertex posi-

tions.

pcom =

∑
vi∈V vi

|V |
(5)

Since the surface meshes in this work are of approx-

imately of uniform density (see Section 3.2), we have

6 Peeters and Pronost

a rough estimate of the center pcom of the object. We

use this value to determine if a vertex-normal vni of a

vertex on the convex hull is face outward of the object

or inward. The vertex normal is based on the average

face-normals of the faces surrounding vi.

vafi = {k : i ∈ fk}

vni =

∑
fk∈vaf

i
fnk

|vafi |
(6)

Here, vafi are the faces that contain vi. We then com-

pose the following equation that gives a measure of how

much a vertex-normal is facing outwards.

u = (vi − pcom)

di = vni · u (7)

We calculate the dot product of the vector from the

center of the object to the vertex vi with the vertex

normal vni. The value di scales from 1 to -1, where

1 means vni is pointing straightly outwardly and -1

means vni is pointing exactly to the center pcom. We

calculate this value for all vi ∈ V C, and choose the

vertex vopt with the highest d-value. From this vertex

vopt, we pick a random face fk ∈ vafopt to be the seed

triangle, thus ensured to be a valid triangle.

3.6 Resolving surface overlaps

The surfaces resulting from segmentation algorithms

may also contain surfaces that intersect each other. As

illustrated in Figure 4, these intersections can be quite

severe.

Exact subtractions of surfaces can be made using

Boolean operators. We used a combination of an exist-

ing implementation of Boolean operators and an adap-

tation of the self-intersection removal method.

We used the Boolean operator implemented in the

Carve constructive solid geometry library (CSG) [25],

since it is efficient and the main freely available CSG

library. It is able to perform Boolean operations such

as union, difference and subtraction. We use the sub-

traction operator to resolve the surface overlaps. The

library can take two polygon meshes, Sx and Sy, and

produces a mesh S′x of which the part intersecting with

Sy is removed.

The self-intersection removal algorithm presented in

Section 3.5 can also be employed as a subtraction algo-

rithm. The method provides an intersection detection

mechanism from which we can reuse nearly all com-

ponents. The method is described as follows. We have

surface Sx and surface Sy, and we want to calculate

Sx−Sy. We merge the two surfaces into one data struc-

ture Sz but we invert the face normal directions of Sy.

Fig. 4 Top: View of the adductor magnus intersecting with
the pelvis bone surface. Bottom: Same intersection as seen
from the ‘inside’ of the adductor magnus muscle geometry.

We then have one surface Sz, on which we can apply the

self-intersection removal algorithm with a seed triangle

from Sx. The algorithm will detect the intersections be-

tween the two surfaces, and will regard the part of Sy
as a self-intersecting part of Sx.

The method gives the same quality results as the

Carve library, but is in some cases less stable (when

dealing with degenerate cases) and our implementa-

tion is less optimized than the Carve implementation.

Therefore we primarily use the Carve library in the final

algorithm. In the situations where Carve cannot find a

correct solution, we automatically fall back to the sub-

traction by self-intersection removal method. The Carve

library fails to create a subtraction result when one of

the input surfaces has one or more holes.

Figure 5 shows an example of the subtraction of a

bone (femur) from a muscle (vastus medialis).

The order in which the operations are executed de-

termines the resulting mesh configuration. The object

that is processed first will most likely lose the most of

its geometry, and will have no influence on the other

objects. The object that is processed last will not be

influenced at all by other objects. We chose the bones

to always be processed last, since their segmentation

quality is the highest. The bones are relatively easy to

distinguish on an MRI scan, therefore the segmentation

result is the most reliable and less prone to segmenta-

tion errors. Since the bones are processed lastly, they

A practical framework for generating volumetric meshes of subject-specific soft tissue 7

Fig. 5 The vastus medialis after the femur has been sub-
tracted. The femur is represented as the transparent wire-
frame surface.

will never be influenced by muscle objects. The muscles

and bones are among themselves ordered in descending

order of volume. This way the surfaces that are smaller

will be processed later, meaning they will be the last to

be subtracted from. This is appropriate, since the im-

pact of changes on small objects is usually higher. We

use a simple bounding box method to predetermine if

a subtraction should be executed to reduce the number

of subtractions.

In our experiments we have tested the above al-

gorithm with few muscles and bones. We believe that

most of the interaction problems that will occur when

attempting to model more anatomically realistic exam-

ples will be resolved. Indeed, the management of numer-

ous interactions between the different anatomical enti-

ties during the FE simulation will be taken care of by

the solver (but increased complexity by adding entities

means significant increase in solver time). Nevertheless,
we can imagine very specific cases where entities have

been so badly segmented (or segmented on very noisy

MRI) that our solving technique will not produce real-

istic results (e.g. small muscle completely removed or

cut into several parts).

During this research, we tried several other methods

of approaching the overlap problem which are shortly

described in Appendix A along with their advantages

and limitations regarding our goal.

3.7 Generating volume mesh

Since the FE simulation is based on a volumetric repre-

sentation of elements, we need to convert the triangu-

lar surface representation of our objects to a tetrahedral

volume representation. We used the algorithm provided

by the CGAL library for this operation [26–28].

The volume mesh produced by the algorithm is a

set of vertices V = {vi : 1 ≤ i ≤ nV }, and a set of

tetrahedral cells C = {ck : 1 ≤ k ≤ nC}. Each cell

ck = (ik1 , i
k
2 , i

k
3 , i

k
4) consists of a sequence of exactly four

indices in the vertex list, since the algorithm only pro-

duces tetrahedral cells. A volume mesh M = {V,C} is

a vertex list combined with a cell list.

We apply cleanup steps after the mesh generation

to remove ‘loose’ tetrahedra. For example, tetrahedra

that have only one connection to the rest of the mesh

are removed as these tetrahedra can lag behind because

of inertia and can produce oscillations as they do not

move in sync with the rest of the tissue they belong

to. These oscillations can make the simulation unstable

and can prevent the solver of finding solutions. If caci
represents the cell indices of cells surrounding the cell

ci, we can define the loose cells as CL = {ci : |caci | ≤ 1}.
After selecting these elements, we remove them from

the volume mesh.

3.8 Creating attachment and tendon convex hulls

As explained in Section 3.2, the attachments and ten-

dons are specified as indices in vertex lists that are

saved in a surface mesh file. In the previous stages in

the pipeline, these files are changed topologically, and

finally converted to volume meshes. To preserve the at-

tachment data, we convert the index-based representa-

tion to a geometric representation.

The first step is to convert the index-based repre-

sentation A = {i1, . . . , inA
} to a position-based repre-

sentation AP = {p1, . . . , pnA
}. This is done simply by

looking up the vertices in a compatible vertex list V .

We can use any vertex list, as long as it has the same

vertex ordering as the original vertex list from the seg-

mentation algorithm. Therefore, we use the vertex list

that results from the smoothing stage as described in

Section 3.3. From AP , we can calculate a convex hull,

to obtain the area where the attachment is active. The

convex hull is a surface AS = {V, F} on which we can

apply standard surface operations. We use the convex

hull algorithm from CGAL to implement this conver-

sion [29]. To account for possible rounding errors, we

grow the surface slightly using a raw offset operation:

v′i = vi + λvni, where v′i is the new vertex position of

vi grown in the vertex normal vni direction, and λ is a

growth factor.

Figure 6 shows resulting attachment and tendon re-

gions for the vastus lateralis muscle. To calculate the

tendon regions from the specification, we use the exact

same process as for the attachments.

As a final step, we convert the attachment and ten-

don regions into indices in the volume meshes M =

{V,C}. We check for each vertex vi ∈ V if it lies inside

8 Peeters and Pronost

Fig. 6 Vastus lateralis muscle in red, the tendon convex hulls
are purple, the attachment convex hulls are yellow and the
femur bone is transparent.

the attachment surface AS. We do this check using the

Carve library [25]. The new attachment specification

can be described as follows.

AM = {i : vi ∈ VM , inside(vi, AS)} (8)

Here, AM is the set of indices that point to vertices

in the volume mesh M . This new representation can be

used directly in the next features of the framework.

4 Discussion

The framework described in Section 3 produces a num-

ber of data units that have to be combined to be ready

to be used by a finite element solver. In Appendix B

we indicate the most relevant parameters of the frame-

work. It is also to remember that if one wants to use

the motion from a musculoskeletal simulation platform

such as OpenSim, one needs to convert the joint motion

from the platform system to a transformation (rotation

and translation) of the bones in the finite element sim-

ulation. Fortunately, usually muscle models and MRI

data both contain a set of markers designed to be lo-

cated on common anatomical landmarks.

As gathering subject-specific data from versatile sour-

ces is a tedious task and executing the pipeline (from

segmentation to FE simulation) is time-consuming, we

have presented results for only one subject, with a lim-

ited set of muscles. But we are confident that our frame-

work is robust and transferable to a large variety of

datasets of the same nature.

The objective of our framework is to allow for the

direct connection of a subject-specific motion with the

FE simulation of the soft tissue. Eventually, the frame-

work will also take into account the muscle activations

determined by musculoskeletal analysis of the same mo-

tion. Active muscle contraction could then be used to

deform the muscle shape in a more realistic way. The

bones could be either actively moved by constraints in

the FE solver, or passively moved by the muscle de-

formations. In the latter case one of the goals of the

simulation would be for the resulting motion to match

the original recorded motion as closely as possible. Ulti-

mately we can imagine a dual coupling approach, where

the capabilities of the musculoskeletal platform are ex-

tended by taking into account subject-specific deforma-

tion of muscles.

Our dataset did not contain the subject-specific fiber

information from the MRI. Indeed, we are dealing here

with quite low-resolution images, producing the arti-

facts previously presented. Nevertheless, this informa-

tion could eventually be approximated from muscle mod-

els commonly used in musculoskeletal simulation (e.g.

by using pennation angles or template fiber maps). Ani-

sotropic muscle and tendon materials could then be

used to obtain more accurate deformations.

Materials which support fiber directions have been

proposed in the literature and even implemented in FE

solvers such as FEBio [30,31], but need a significant

elaborate configuration. Together with muscle activa-

tion these materials would greatly contribute to the ac-

curacy of the simulation. The disadvantage is of course

the increase in parameters, and most likely the manual

configuration of fiber directions for each muscle.

Alternative models could have been obtained on a

dataset of higher quality. Higher resolution of MRI data

with less noise can be obtained by using a scanner with

a stronger magnetic field. The resulting segmentation

would have less artifacts and the resulting FE ready

meshes would be more accurate. In addition, if dynamic

MR images of a leg in motion could be acquired, seg-

mented bones and soft tissue could be compared to the

results of FE simulations performing the same motion.

This way, the deformation of the muscles in the FE sim-

ulation can be compared to a real world example, which

would validate the deformation of the muscles, thereby

confirming or invalidating the parameters of the simu-

lation. This would serve as a fine tuning process of the

parameters of the materials as well.

5 Conclusion

We have presented a semi-automated practical frame-

work that resolves data inaccuracies dedicated to subject-

specific soft tissue deformation. Segmentation artifacts

from low MRI quality are smoothed out, self-intersec-

tions are removed and inter-object overlaps are resolved.

The framework has the ability to semantically clean up

the data, by removing objects from specific data files

and generating new tendon geometry in case of missing

A practical framework for generating volumetric meshes of subject-specific soft tissue 9

tendons. The volume mesh generation is also performed

automatically but should be configured to the user’s

need, depending on the user’s preferred detail and per-

formance of the simulation. The attachment sites and

tendon areas are automatically added to the output of

the pipeline: an FE model that has the volume data,

material and attachment specifications.

We hope to propose a step towards a unified plat-

form for neuromuscular and finite element simulation.

Ultimately the framework will be able to extend the ca-

pabilities of musculoskeletal platforms by taking gener-

ated subject-specific motions to drive MRI-based finite

element simulations. Future research could also create

a reverse connection, by using and visualizing FE sim-

ulations in, for example, OpenSim such as initiated by

Pronost et al. [32].

Acknowledgements This work was initiated by the Euro-
pean Marie Curie Program under the 3D ANATOMICAL
HUMAN project (MRTN-CT-2006-035763). The authors would
like to acknowledge Jerome Schmid, Anders Sandholm, Nadia
Magnegnat-Thalmann, Daniel Thalmann and Arjan Egges for
their assistance in this work.

References

1. D. Lee, M. Glueck, A. Khan, E. Fiume, and K. Jackson.
Modeling and simulation of skeletal muscle for computer
graphics: A survey. Foundations and Trends in Computer
Graphics and Vision, 7(4):229–276, 2012.

2. J. Teran, E. Sifakis, S. Blemker, V. Ng-Thow-Hing,
C. Lau, and R. Fedkiw. Creating and simulating skele-
tal muscle from the visible human data set. IEEE
Transactions on Visualization and Computer Graphics,
11(3):317–328, May 2005.

3. S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan,
A. Habib, C.T. John, E. Guendelman, and D.G. Thelen.
OpenSim: Open-source software to create and analyze
dynamic simulations of movement. IEEE Transactions
on Biomedical Engineering, 54(11):1940–1950, 2007.

4. M. Damsgaard, J. Rasmussen, S.T. Christensen,
E. Surma, and M. de Zee. Analysis of musculoskeletal
systems in the Anybody modeling system. Simul. Model.
Pract. Theory, 14:1100–1111, 2006.

5. S. L. Delp, J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp,
and J. M. Rosen. An interactive graphics-based model of
the lower extremity to study orthopaedic surgical proce-
dures. IEEE Trans. Biomed. Eng., 37(8):757–767, 1990.

6. J.M. Wang, S.R. Hamner, S.L. Delp, and V. Koltun. Op-
timizing locomotion controllers using biologically-based
actuators and objectives. ACM Transactions on Graph-
ics, 31(4), 2012.

7. A.W.J. Gielen, C.W.J. Oomens, P.H.M. Bovendeerd,
T. Arts, and J.D. Janssen. A finite element approach
for skeletal muscle using a distributed moment model of
contraction. Computer Methods in Biomechanics and
Biomedical Engineering, 3(3):231–244, 2000.

8. T. Johansson, P. Meier, and R. Blickhan. A finite-element
model for the mechanical analysis of skeletal muscles.
Journal of Theoretical Biology, 206(1):131–149, 2000.

9. M. Kojic, S. Mijailovic, and N. Zdravkovic. Modelling
of muscle behaviour by the finite element method us-
ing Hill’s three-element model. International Journal for
Numerical Methods in Engineering, 43(5):941–953, 1998.

10. T.R. Jenkyn, B. Koopman, P. Huijing, R.L. Lieber, and
K.R. Kaufman. Finite element model of intramuscular
pressure during isometric contraction of skeletal muscle.
Physics in Medicine and Biology, 47:4043, 2002.

11. U.S. National Library of Medicine. The visible human
project. http://www.nlm.nih.gov/research/visible/.

12. F. Dong, G.J. Clapworthy, M.A. Krokos, and J. Yao.
An anatomy-based approach to human muscle modeling
and deformation. IEEE Trans. Vis. Comput. Graph.,
8(2):154–170, 2002.

13. T. Shinar, C. Schroeder, and R. Fedkiw. Two-way cou-
pling of rigid and deformable bodies. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion (SCA), volume edited by D. James and M. Gross,
pages 95–103, 2008.

14. J. Kim and N.S. Pollard. Fast simulation of skeleton-
driven deformable body characters. ACM Transactions
on Graphics, 30(5):1–19, October 2011.

15. I. Stavness, J.E. Lloyd, Y. Payan, and S. Fels. Coupled
hardsoft tissue simulation with contact and constraints
applied to jawtonguehyoid dynamics. International Jour-
nal for Numerical Methods in Biomedical Engineering,
27(3):367–390, 2011.

16. J.A. Sethian. A fast marching level set method for mono-
tonically advancing fronts. Proceedings of the National
Academy of Sciences of the United States of America,
93(4):1591–1595, 1996.

17. S. Osher and R.P. Fedkiw. Level set methods and dy-
namic implicit surfaces, volume 153. Springer Verlag,
2003.

18. S.S. Blemker and S.L. Delp. Three-dimensional represen-
tation of complex muscle architectures and geometries.
Annals of Biomedical Engineering, 33(5):661–673, 2005.

19. S.S. Blemker and S.L. Delp. Rectus femoris and vas-
tus intermedius fiber excursions predicted by three-
dimensional muscle models. Journal of Biomechanics,
39(8):1383–1391, 2006.

20. J. Schmid and N. Magnenat-Thalmann. MRI bone seg-
mentation using deformable models and shape priors. In
MICCAI, volume LNCS 5241, pages 119–126, 2008.

21. B. Gilles, L. Moccozet, and N. Magnenat-Thalmann.
Anatomical modeling of the musculoskeletal system from
MRI. Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 289–296, 2006.

22. G. Taubin. Curve and surface smoothing without shrink-
age. In Fifth International Conference on Computer Vi-
sion, pages 852–857, 1995.

23. D. Baraff, A. Witkin, and M. Kass. Untangling cloth.
ACM Transaction on Graphics, 22(3):862–870, July
2003.

24. W. Jung, H. Shin, and B.K. Choi. Self-intersection re-
moval in triangular mesh offsetting. Computer-Aided De-
sign and Applications, 1(1-4):477–484, 2004.

25. Carve, constructive solid geometry library.
http://code.google.com/p/carve.

26. CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

27. L. Rineau, S. Tayeb, and M. Yvinec. 3D mesh generation.
In CGAL User and Reference Manual. 2009.

28. S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes
bounded by smooth surfaces. In Proceedings of the 14th
International Meshing Roundtable, pages 203–219, 2005.

10 Peeters and Pronost

29. S. Hert and S. Schirra. 3D convex hulls. In CGAL User
and Reference Manual. 2009.

30. FEBio, Finite Elements for Biomechanics.
http://mrl.sci.utah.edu/software.php.

31. S.A. Maas, B.J. Ellis, D.S. Rawlins, and J.A. Weiss. A
comparison of FEBio, ABAQUS, and NIKE3D results for
a suite of verification problems. 2009.

32. N. Pronost, A. Sandholm, and D. Thalmann. A visual-
ization framework for the analysis of neuromuscular sim-
ulations. The Visual Computer, 27:109–119, 2011.

33. J.L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
1975.

34. O.K.C. Au, C.L. Tai, H.K. Chu, D. Cohen-Or, and T.Y.
Lee. Skeleton extraction by mesh contraction. ACM
Transaction on Graphics, 27(3):1–10, 2008.

Appendix A

A.1 Push-based method

During this research, we tried several methods of

approaching the overlap problem. We first developed a

method where two objects would push each other away.

The reason for using a push-based method is that the

topology of the object remains intact, and the attach-

ment and tendon information are transformed together

with the surface. The surfaces that have smaller vol-

umes have a higher priority, meaning they will be the

last to be deformed, because their changes will most

likely have the most impact on the shape of the object.

The bones will have the highest priority since they have

the best segmentation quality. First we apply an itera-

tive smoothing algorithm on the pushed surface to rep-

resent the general trend that the surface has. We then

use this information to determine the direction where

to each overlapping vertex should move when pushed

away by the other surface. As we also want to take into

account the geometry of the pushing surface, this di-

rection is combined with the average vertex normal of

the closest vertices in the pushing surface. This lookup

is done using a kd-tree, for which the implementation

from the CGAL library is used [26,33]. We take the 10

closest vertices, calculate the vertex normals of those

and average them. This gives us a second pushing di-

rection vector which is combined to the smoothed di-

rection with an equal weight. A vertex is pushed away

in that direction until it does not lie inside the other

surface anymore. Unfortunately, this method fails if a

surface lies too far inside another one, because pushing

directions cannot be accurately determined anymore.

Furthermore, the convergence of this kind of technique

will be difficult to ensure when the dataset is made of

many objects e.g. with all muscles, fat-tissue and skin

layers.

A.2 Shrink-based method

We also looked at methods that can make two sur-

faces push each other away by both moving vertices to

a shrunk copy of the surface. For this, we need an al-

gorithm that can give for a surface S a shrunk version

S′. Shrinking an object iteratively gives a sequence of

shrunk surfaces S1 . . . Sn. Similarly, each vertex vi ∈ V ,

has a sequence of shrunk positions v1i . . . v
n
i . By apply-

ing the shrinking algorithm iteratively on the overlap-

ping surfaces, they will naturally move apart. We tried

the following two shrinking algorithms.

Shrinking by smoothing. We used a shrinking al-

gorithm based on standard Laplacian smoothing [22].

Each vertex is moved in the average direction of its

neighbors.

vt+1
i = vti + λ

∑
j∈vav

i
vtj − vti

|vavi |
(9)

Here λ is the scaling factor of the displacement done

at each shrinking step. This method produces smooth

shrinking, and can be done in arbitrarily small steps.

The problem of this method is that globally, the sur-

face will shrink, but locally, the surface can expand.

Specifically, concave parts of the surface will expand,

and convex parts will shrink.

Shrinking to skeleton. The second shrinking algo-

rithm we developed moves the vertices of the surface to

a pre-calculated ‘skeleton’, which represents the global

minimal structure of an object. We determine this skele-

ton using the method of Au et al. [34]. The algorithm

takes a surface S = {V, F} and produces a curve-skeleton

K = (U,E) with skeleton nodes U and edges E, where

U = {u1, u2, . . . , unU
} are the node positions. The al-

gorithm also produces a mapping coll(vi) = uk from

vertices to skeletal nodes, which gives for each vertex

vi the node uk to which it was collapsed in the skele-

ton. The shrinking algorithm we developed moves the

vertices towards an attraction point on the skeleton.

The attraction points are dynamically determined by

the mapping coll(vi), where the influence of the parent

node of each vertex increases as the vertex moves closer

to the skeleton. The smoothness of the shrinking could

be improved by a different strategy of moving toward

the skeleton. Unfortunately, the algorithm has a big-

ger defect: the algorithm produces for some muscles a

skeleton that lies outside of the surface shape, which is

not tolerable for our application, since the vertices can

never go outside of the original shape.

A practical framework for generating volumetric meshes of subject-specific soft tissue 11

Appendix B

Static MRI scans of the whole lower limb have been per-

formed. The subject was lying in a resting pose. In close

collaboration with radiologists, adequate protocols for

the imaging of soft and bony tissues was defined. The

following protocol was used: 1.5T Philips Medical Sys-

tems machine, axial 2D T1 Turbo Spin Echo, TR/TE =

578/18 ms, FOV/FA = 40 cm/90◦, matrix/resolution

= 512x512/0.78x0.78 mm, thickness: from 2 mm (near

joints) to 10 mm (long bones).

Not all algorithms in the pipeline can be used with-

out configuration. We describe hereafter the most sig-

nificant parameters used in the pipeline. The smoothing

algorithm (Section 3.3) has three parameters: λ factor,

µ factor and number N . The surfaces in our dataset

are smoothed with the values λ = 0.33, µ = −0.331

and N = 1000 iterations.

In the tendon generation step (Section 3.4), we add

regularly spaced vertices to fill the gap between the end

of the tendon and the start of the muscle. The space

between these rows of vertices is set to 2 mm.

The degenerate triangle method (Section 3.5), needs

two ε values, εe and εα, that respectively indicate the

minimal edge length and minimal angle. In the experi-

ment, we used εe = 0.5 mm and εα = 0.01 degrees.

The overlap solving algorithm (Section 3.6) creates

a raw-offset of the surface that will be subtracted. The

parameter λ indicating the distance of the offset is set

to λ = 1 mm.

The volume mesh generation step has several pa-

rameters determining the final density and accuracy

of the output mesh. Table 1 lists the parameters used

on our dataset. For both muscle and bone objects, we

choose the same values for angular bound and radius-

edge bound. This is because these values do not in-

fluence the amount of elements created in the output

mesh, but only influence the runtime of the mesh gener-

ation. Facet angular bound is set to 30 degrees because

the CGAL algorithm will guarantee a solution for this

bound. The radius-edge ratio is set to 1.25, because we

want to avoid unbalanced tetrahedra. For the radius

bounds, we choose for the muscle a lower value since it

will deform during the simulation and therefore needs

a higher resolution. The bones are not going to deform

so the size of the tetrahedra inside of the bones is not

important, hence the high value.

Parameter name Muscle Bone
facet angle (deg) 30.0 30.0
facet size (mm) 5.0 15.0
facet distance (mm) 0.5 0.75
cell radius-edge ratio 1.25 4.0
cell size (mm) 3 100

Table 1 CGAL mesh generation parameters

